Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mónica Villanueva,^a M. Karmele Urtiaga,^b* José L. Mesa^a and M. Isabel Arriortua^b

^aDepartamento de Química Inorgánica, Facultad de Ciencias Universidad del País Vasco, Apartado 644, E-48080 Bilbao, Spain, and ^bDepartamento de Mineralogía y Petrología, Facultad de Ciencias Universidad del País Vasco, Apartado 644, E-48080 Bilbao, Spain

Correspondence e-mail: nppurgrm@lg.ehu.es

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.035 wR factor = 0.093 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

Diazidobis(2,2'-dipyridylamine)nickel(II) monohydrate

The coordination environment of the Ni atom in the title compound, $[Ni(N_3)_2(dpa)_2(N_3)_2]$ ·H₂O (dpa = 2,2'-dipyridylamine, C₁₀H₉N₃), is that of an octahedron, with the two azide ligands in a *cis* arrangement. The crystal structure of the complex is stabilized by hydrogen bonds involving the water molecule, resulting in a two-dimensional network in the (001) plane. Received 6 July 2004 Accepted 16 July 2004 Online 24 July 2004

Comment

The 2,2'-dipyridylamine (dpa) ligand has several possible configurations for coordination. The *anti–anti* configuration, referring to the relation of the pyridyl N atoms to the amine H atom, has been found in many bidentate chelate complexes (*e.g.* Rodig *et al.*, 1981; Youngme *et al.*, 1998; Mesa *et al.*, 1998). The *syn–syn* configuration occurs in trinuclear complexes (Pyrka *et al.*, 1991; Wu *et al.*, 1990), and the *anti–syn* configuration exists in the dimer of the free ligand (Yang *et al.*, 1994).

Recently, we have begun a study of the polynuclear complexes of bivalent transition metals (*e.g.* Ni^{2+} , Mn^{2+} and Cu^{2+}) with bidentate ligands and pseudohalide groups. In order to determine the influence of the azide (N_3^-) ligand in structures of this type, we have synthesized the title complex, (I), [Ni(dpa)₂(N_3)₂]·H₂O, and report its structure here.

The crystal structure of (I) (Fig. 1) comprises coordination complexes and solvent water molecules in the ratio 1:1. The Ni atom is at the centre of an NiN₆ octahedron, formed by the four N atoms of the dpa ligands and the two N atoms of the terminal azides (Table 1). The two bidentate ligands have a *cis* disposition around the metal ion and are almost perpendicular to each other $[N3-Ni-N4 \ 91.41 \ (6) \ and \ N3-Ni-N6 \ 172.30 \ (6)^{\circ}]$. Similarly, the azide ligands are *cis* to each other and are practically linear (Table 1).

An interesting feature of the structure of (I) is the formation of a two-dimensional structure stabilized by strong N– $H \cdots N$, N– $H \cdots O$ and O– $H \cdots N$ hydrogen bonds (Table 2). Thus, layers of complex molecules aggregate in the (001) plane and are connected to each other by water molecules, forming a sandwich-type array.

Figure 1

A view of the structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Experimental

 $[Ni(dpa)_2(N_3)_2] \cdot H_2O$ was synthesized from the reaction of NiCl₂·6H₂O (0.052 g, 0.219 mmol), 2,2'-dipyridylamine (0.075 g, 0.438 mmol) and NaN₃ (0.140 g, 2.150 mmol) in water (20 ml). The complex was isolated by filtration, washed with water and diethyl ether and dried over P2O5 for 1 h. Green prismatic single crystals of (I) were obtained by recrystallization from a methanol-water (1:1) solution of the complex. Analysis found: C 47.3, H 3.7, N 33.0, Ni 11.5%; calculated for $C_{20}H_{20}N_{12}Ni$: C 47.7, H 4.0, N 33.4, Ni 11.7%. The diffuse reflectance spectrum of (I) exhibits the essential characteristics of octahedrally coordinated Ni^{II} ions. Three absorption bands ascribed to the spin-allowed transitions ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ (F), ${}^{3}T_{1g}$ (F) and ${}^{3}T_{1g}$ (P) are observed at 9090, 15 150 and 26 665 cm⁻¹, respectively. The spin-forbidden transitions ${}^{3}A_{2g} \rightarrow {}^{1}E_{g}$ and ${}^{1}T_{2g}$ can also be observed, at 13 890 and 21 275 cm⁻¹, respectively. The Dq and Racah (B and C) parameters were calculated by fitting the experimental frequencies to an energy-level diagram for octahedral d^8 systems (Lever, 1984). The values obtained are Dq = 910, B = 975 and $C = 3990 \text{ cm}^{-1}$. The resulting value for the *B* parameter supposes a reduction of *ca* 90% from that of the free Ni^{II} ions.

Crystal data

[Ni(N₃)₂(C₁₀H₉N₃)₂]·H₂O $D_m = 1.55 \text{ Mg m}^{-3}$ D_m measured by flotation in $M_{r} = 503.17$ Triclinic, P1 CH₂Cl₂-CCl₄ a = 7.651 (3) ÅMo $K\alpha$ radiation b = 9.268(2) Å Cell parameters from 25 c = 16.721 (4) Å reflections $\alpha = 79.36 \ (2)^{\circ}$ $\theta = 8.1 - 13.3^{\circ}$ $\mu = 0.93 \text{ mm}^{-1}$ $\beta = 84.17 (2)^{\circ}$ $\nu = 69.78(2)^{\circ}$ T = 293 (2) KV = 1092.6 (6) Å³ Prism, green $0.16 \times 0.14 \times 0.10 \text{ mm}$ Z = 2 $D_x = 1.530 \text{ Mg m}^{-3}$ Data collection $R_{\rm int}=0.017$ Enraf-Nonius CAD-4 diffractometer $\theta_{\rm max} = 30.0^{\circ}$ $h = -2 \rightarrow 10$ $\omega/2\theta$ scans $k = -12 \rightarrow 13$ Absorption correction: ψ scan (North et al., 1968) $l = -23 \rightarrow 23$ $T_{\rm min}=0.863,\ T_{\rm max}=0.914$ 2 standard reflections 7053 measured reflections every 100 reflections 6337 independent reflections intensity decay: 1.8%

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0449P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.035$	+ 0.159P]
$vR(F^2) = 0.093$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.027$
5337 reflections	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
668 parameters	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$
Only coordinates of H atoms	
refined	

Table 1

Selected geometric parameters (Å, °).

Ni-N1	2.1040 (16)	Ni-N6	2.1047 (16)
Ni-N3	2.0822 (15)	Ni-N7	2.1147 (17)
Ni-N4	2.1198 (16)	Ni-N10	2.1266 (18)
N1-Ni-N4	91.09 (6)	Ni-N7-N8	120.13 (13)
N1-Ni-N6	90.19 (6)	Ni-N10-N11	125.79 (14)
N3-Ni-N4	91.41 (6)	N7-N8-N9	178.2 (2)
N3-Ni-N6	172.30 (6)	N10-N11-N12	178.1 (2)
N7-Ni-N10	87.43 (7)		

Table 2	_	
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H21\cdots N7^{i}$	0.76 (3)	2.34 (3)	3.100 (3)	177 (3)
$N5-H31\cdots O1^{i}$	0.84 (3)	2.02 (3)	2.852 (3)	169 (2)
$O1 - H40 \cdot \cdot \cdot N12^{ii}$	0.76 (5)	2.18 (5)	2.928 (4)	168 (5)
$O1-H41\cdots N12^{iii}$	0.75 (4)	2.17 (4)	2.900 (4)	163 (4)
	1 (") 1	() 1	4	

Symmetry codes: (i) x - 1, y, z; (ii) x, 1 + y, z; (iii) 1 - x, -y, 1 - z.

All H atoms were refined with a common $U_{iso}(H)$ value. The ranges of the O–H, N–H and C–H distances were 0.73 (6)–0.76 (3), 0.75 (3)–0.83 (3) and 0.88 (3)–0.96 (3) Å, respectively.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was financially supported by the Ministerio de Ciencia y Tecnología, Spain (grant No. BQU2001-0708).

References

- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Lever, A. B. P. (1984). *Inorganic Electronic Spectroscopy*. Amsterdam: Elsevier Science Publishers.
- Mesa, J. L., Pizarro, J. L. & Arriortua, M. I. (1998). Cryst. Res. Technol. 33, 489–495.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Pyrka, G. J., Ei-Mekki, M. & Pinkerton, A. A. (1991). J. Chem. Soc. Chem. Commun. pp. 84–85.

4806 reflections with $I > 2\sigma(I)$

- Rodig, O. R., Brueckner, T., Huriburt, B. K., Schlatzer, R. K., Benable, T. L. & Sinn, E. (1981). J. Chem. Soc. Dalton Trans. pp. 196–199.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

- Wu, L., Field, P., Morrisey, T., Murphy, C., Nagle, P., Hathaway, B. J., Simmons, C. & Thornton, P. (1990). J. Chem. Soc. Dalton Trans. pp. 3835–3840.
- Youngme, S., Poopasit, K., Fun, H.-K., Chinnakali, K., Razak, I. A. & Chantrapromma, S. (1998). *Acta Cryst.* C**54**, 1221–1223.
- Yang, E.-C., Cheng, M.-C., Tsai, M.-S. & Peng, S.-M. (1994). J. Chem. Soc. Chem. Commun. pp. 2377–2378.